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theoretical direction rather than a computing focus, and
the reader is left with a significant amount of work to doEigenequations leading to compact algorithms for computing the

optical properties of anisotropic media that may be stratified in the in order to develop a useful computer program. Thus there
x-direction are described. For each medium a 4 3 4 matrix F̂ of remains a need for simple algorithms for computing optical
basis field vectors is determined as the eigenvectors of a 4 3 4 properties resulting from propagation in anisotropic
matrix form of Fresnel’s equation. A minimum sort of the columns media.
of F̂ that is necessary for a birefringent cover or substrate separates

In this article we derive compact algorithms that arebasis vectors that carry power in the positive and negative x-direc-
based on the solution of eigenequations derived from Max-tions respectively. A sorting procedure is discussed for the most
well’s equations. We begin by reviewing the relevant prop-complicated refractive index section in which the outer and inner

sheets do not touch and the outer sheet has a well defined cusp. erties of anisotropic media, develop the algorithms, and
MATLAB code is provided for the implementation of basic then discuss a procedure for sorting the eigenvalues and
routines. Q 1997 Academic Press eigenvectors by considering the most complicated exam-

ple. Finally, implementation code for MATLAB [7] is
listed in an appendix.

1. INTRODUCTION

2. MATERIAL AND PROPAGATION AXES
Birefringent materials are used extensively for measur-

ing or changing the polarization state of light. When the 2.1. Material Principal Axes
materials are used with coherent light interference effects

We consider a general linear biaxial dielectric mediumcaused by multiple reflections have a significant effect on
that is nonmagnetic and not optically active. Such a me-overall properties. Thus the exact phase retardation of a
dium has three mutually orthogonal principal dielectricwave plate in a laser beam depends on the interferometric
axes, which we label 1, 2, 3 as shown in Fig. 1, and threethickness of the plate.
associated principal refractive indices n1 , n2 , n3 . Thus n1Current developmental work on the deposition and char-
is the refractive index ‘‘seen’’ by light travelling with itsacterization of birefringent optical coatings requires access
electric field E parallel to the 1-axis. For more generalto computer routines which are both robust and flexible. directions of propagation the polarization of the light is

For example, computation of reflectance and transmittance determined by the electric displacement, D, which is re-
at an arbitrary angle of incidence may be required in one lated to the electric field by the dielectric permittivity,
application, computation of phase retardation in a second D 5 «0«E, where « is a symmetric tensor of rank 2.
application, and modelling of transmission in a planar biax- In general we shall represent a field such as E by a
ial waveguide in another. column vector formed from the components of E. To make

Several authors have contributed to the development equations easier to read, a right overarrow symbol R is
of 4 3 4 matrix theories for describing propagation in used to identify a column vector and the hat symbol ˆ
anisotropic media [1–3], and the matrix method has been indicates a matrix. Thus,
applied to thin films [4], waveguides [5], and macroscopic
devices such as birefringent filters for tuning the output
wavelength of lasers [6]. However, these papers have a

E
R

123 5 3
E1

E2

E3

4 (1)

* This work was performed at the University of Otago and was sup-
ported by the New Zealand Foundation for Research, Science and Tech-
nology under Contract Number UOO408. represents the electric field of a travelling wave in the
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consequence the z-component of the wavenormal is zero,
and we can write a column vector for the wavenormal in
the form sR 5 hsx sy 0j 5 hcos u sin u 0j, where u, the angle
of incidence, is the angle between the wavenormal and the
x-axis. Note that, by default, column vectors and matrices
are assumed to be referenced to the propagation axes.

The relative directions of the material axes and the prop-
agation axes are specified by starting with aligned axes
and rotating the material in turn about x, z, and x again.
Transformations between axes are readily carried out using
the rotation matrices

FIG. 1. The axes 1, 2, 3 are the principal axes, with associated principal
refractive indices n1 , n2 , n3 , of the biaxial medium. Light propagates in
the x–y plane and layer interfaces are parallel to the y–z plane. The

Ŝx(f) 5 31 0 0

0 cos f 2sin f

0 sin f cos f
4 (3)orientation of the biaxial medium is determined by the rotation c of the

medium about the z-axis shown in the figure, followed by a rotation j
about the x-axis.

and
material frame. The components E1 , E2 , E3 are amplitudes
that may be signed or complex, but note that the complex
exponential spatial and temporal phase terms of the wave,

Ŝz(f) 5 3cos f 2sin f 0

sin f cos f 0

0 0 14 (4)which we write as exp(ikax), exp(ikby), exp(2igt) with
k 5 2f/l 5 g/c, a 5 n cos u, b 5 n sin u, are implied but
not included explicitly.

The relative permittivity is represented by a diagonal
For a tilted columnar thin film [5] it is sufficient to rotatematrix in the material frame,

the material by an angle c about z to establish the column
angle in the deposition plane, followed by a rotation of j
about x to establish the relative azimuth angle between
the deposition plane and the propagation plane. As an«̂123 5 3

«1 0 0

0 «2 0

0 0 «3

4 , (2)
example of the use of the rotation matrices (for the thin
film case), the symmetric relative permittivity matrix for
the propagation frame,

where «1 5 n2
1 , «2 5 n2

2 , and «3 5 n2
3 .

2.2. Light Propagation Axes

«̂ 5 3
«xx «xy «xz

«xy «yy «yz

«xz «yz «zz
4 , (5)We shall assume, without loss of generality, that light

propagates in the x–y plane, as shown in Fig. 2. As a

can be computed using the equation

«̂ 5 Ŝx(j)Ŝz(c)«̂123Ŝz(2c)Ŝx(2j). (6)

3. PROPAGATION IN BULK BIAXIAL MEDIA

3.1. Maxwell’s Equations

FIG. 2. An incident plane wave establishes four travelling waves in a In this section we consider solutions for the two basis
biaxial layer. Multiple reflections between the interfaces and interference waves that can travel in the same direction in a biaxial
effects are included. All five waves have the same value of b 5 n sin u,

medium. Each basis wave satisfies the vector form of Max-and hence, the y-components of the five wavevectors are equal as illus-
well’s equations for plane harmonic waves listed for SItrated. The values of a 5 n cos u, and hence, the x-components of the

wavevectors are different, in general. units in the left side of Table I; z0 5 (e0/«0)1/2 P 377 V is
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TABLE I propagation direction sR is specified for the x–y propagation
Maxwell’s Equations for Plane Harmonic Waves plane. The refractive indices ns 5 «1/2

s associated with the
two waves and the fields E

R
, D

R
, H

R
that appear in the equa-

Vector form Column vector form Matrix form
tions, together with the magnetic induction B

R
5 e0H

R
, are

the unknowns.nss 3 E 5 z0H ŝÊn̂s 5 z0ĤnsŝE
R

5 z0H
R

The first two equations in the middle row of Table I canŝĤn̂s 5 2«̂Ê/z0nss 3 H 5 2
1
z0

«E nsŝH
R

5 2
1
z0

«̂E
R

be combined simultaneously, to eliminate H
R

. This leaves
sR9D̂ 5 0s.D 5 0 sR9D

R
5 0 an equation for E

R
which we organize as a generalized

sR9Ĥ 5 0s.H 5 0 sR9H
R

5 0 eigenequation, ÎE
R

5 «s(2«̂21ŝ2)E
R

. Here Î is an identity
matrix (which is omitted later), the electric field E

R
is an

eigenvector and «s is an eignevalue. The outcome of this
is that both the electric fields (which are normalized) and

known as the impedance of free space. The middle column the refractive indices can be obtained by making a single
of the table shows a column vector form of Maxwell’s call to the MATLAB eig function.
equations for individual plane waves propagating in the In practice the MATLAB call [Ê, «̂s] 5 eig(Î, 2«̂21ŝ2)
x–y plane. These equations are derived from the equations yields a matrix Ê in which the columns are the E

R
’s and a

in the right-hand column of the table by using the matrix diagonal eigenvalue matrix «̂s in which the nonzero ele-
ments are the «s’s; Ê and «̂s satisfy the equation Ê 5
2«̂21ŝ2Ê«̂s. A summary of similar equations for the four
fields is given in Table II.ŝ 5 3

0 0 sy

0 0 2sx

2sy sx 0
4 (7)

One of the eigenvector/eigenvalue pairs for each line in
Table II represents a trivial solution and is returned as sR

for the eigenvector and a large value for the eigenvalue.
A suitable procedure, such as the one shown in outlinefor sR3; the row vector sR9 5 [sx sy 0] is the simple transpose
below, (i) recognizes and removes this pair, (ii) reduces Êof sR. Note that the matrix ŝ is singular, uŝu 5 0. Hence, care
and n̂s to 3 3 2 and 2 3 2 matrices, respectively, and (iii)is needed with matrix algebra involving ŝ.
completes the solution for the indices and all the fields:The right side of Table I lists Maxwell’s equations in

matrix form. Here all solutions to the problem of plane
Given «̂123 , and sR in the propagation framewave propagation in a common direction are combined

together. Thus Ê, a 3 3 3 matrix, is formed using the 7
E
R

’s as columns and n̂s is a 3 3 3 diagonal matrix formed
Use rotation matrices to calculate «̂from the ns’s associated with the individual plane waves.

7
3.2. Fresnel’s Equation

Call the eig function with [Ê, «̂s] 5 eig(Î, 2«̂21ŝ2)
Note that the n’s can be determined directly from the

7quadratic equation,

Identify the trivial solution
(s2

1«1 1 s2
2«2 1 s2

3«3)n4

7

2 [(s2
1 1 s2

2)«1«2 1 (s2
2 1 s2

3)«2«3 (8)
Reduce order of Ê to 3 3 2 and «̂s to 2 3 2

1 (s2
3 1 s2

1)«3«1]n2 1 «1«2«3 5 0,
7

which is a form of Fresnel’s equation [8]; s1 , s2 , and s3 are
required for this purpose and can be calculated using the TABLE II
rotation matrices, i.e., sR123 5 Ŝz(2c)Ŝx(2j)sR. Propagation in a Common Direction in a Crystal

3.3. Eigenequations for Normalized Fields Eigenequation MATLAB solution Equation satisfied

Matrix solutions to the problem of propagation in a [Ê, «̂s] 5 eig(I, 2«̂21ŝ2) Ê 5 2«̂21ŝ2Ê«̂sE
R

5 «s(2«̂21ŝ2)E
R

common direction in a biaxial medium can be obtained [D̂, «̂s] 5 eig(I, 2ŝ2«̂21) D̂ 5 2ŝ2«̂21D̂«̂sD
R

5 «s(2ŝ2«̂21)D
R

from the column vector form of Maxwell’s equations (mid- [Ĥ, «̂s] 5 eig(I, 2ŝ«̂21ŝ) Ĥ 5 2ŝ«̂21ŝĤ«̂sH
R

5 «s(2ŝ«̂21ŝ)H
R

dle row of Table I) in the following way. It is assumed [B̂, «̂s] 5 eig(I, 2ŝ«̂21ŝ) B̂ 5 2ŝ«̂21ŝB̂«̂sB
R

5 «s(2ŝ«̂21ŝ)B
R

that the relative permittivity «̂ is known and the wave
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Calculate

n̂s 5 «̂1/2
s 3

0 0 b

0 0 2a

2b a 0
4 3

Hx

Hy

Hz
45 2

1
z0 3

«xx «xy «xz

«xy «yy «yz

«xz «yz «zz
4 3

Ex

Ey

Ez
4 . (10)

D̂ 5 «0«̂Ê

Ĥ 5 ŝÊn̂s/z0

B̂ 5 e0Ĥ Six equations are implied here and two of them,

4. PROPAGATION IN LAYERED BIAXIAL MEDIA Ex 5 2(«xyEy 1 «xzEz 1 bz0Hz)/«xx , (11)

Hx 5 (b/z0)Ez , (12)We begin by considering a plane wave propagating in
the x–y plane and incident on a single parallel-sided layer
of biaxial material, as illustrated in Fig. 2. In general, such may be used to eliminate the field components Ex and Hx
a plane wave will initiate four plane waves in the biaxial that are normal to interfaces and not required for boundary
layer, two forward-travelling waves in the x–y plane, and condition matching. This leads to the eigenequation
two backward-travelling waves in the same plane. The four
waves are linearly polarized, in directions specified by the
D fields, and share a common values of the Snell’s law
quantity b 5 n sin u with the incident wave. In most practi-
cal situations the value of b is set by free choice of the
angle of incidence, and so it is reasonable to regard b as 3

2
b«xy

«xx
z0 2

z0b2

«xx
2

b«xz

«xx
0

«yy

z0
2

«2
xy

z0«xx
2

b«xy

«xx

«yz

z0
2

«xy«xz

z0«xx
0

0 0 0 2z0

2
«yz

z0
1

«xy«xz

z0«xx

b«xz

«xx

b2

z0
1

«2
xz

z0«xx
2

«zz

z0
0
4a known quantity.

The wave propagation angles u of the four waves estab-
lished in the biaxial layer are all different, in general, as
are the four effective refractive indices n and the four
values of a. Recall that a 5 n cos u, and notice that knowl-
edge of the four a’s amounts to knowledge of the four n’s
and the four u’s because, for each wave, n 5

(a2 1 b2)1/2 and u 5 sin21 (b/n). 3
Ey

Hz

Ez

Hy

45 a 3
Ey

Hz

Ez

Hy

4 ,Now we can state the problem to be solved in the follow-
ing way: given the principal refractive indices n1 , n2 , n3 ,
the column angle c, the angle j between the deposition

(13)

and propagation planes, and the common Snell’s law quan-
tity b, how can the four a’s and the field components of

which we abbreviate as M̂b F
R

5 a F
R

. Hence solutions tothe four waves be calculated?
both the n’s and the basis fields can be obtained by a single

4.1. Fresnel’s Quartic Equation MATLAB call

As in the previous section, the n’s can be obtained from
[F̂, â] 5 eig(Mb). (14)Fresnel’s equation. However, in this case explicit solutions

are not practical because the recast Fresnel’s equation is
a quartic in a. The 4 3 4 basis field matrix F̂ contains the basis fields

as columns,
4.2. Eigenequation Solution

The upper pair of equations in the middle column of
Table I can be written in the form

F̂ 5 3
E1

y1 E2
y1 E1

y2 E2
y2

H1
z1 H2

z1 H1
z2 H2

z2

E1
z1 E2

z1 E1
z2 E2

z2

H1
y1 H2

y1 H1
y2 H2

y2

4 . (15)

3
0 0 b

0 0 2a

2b a 0
4 3

Ex

Ey

Ez
45 z0 3

Hx

Hy

Hz
4 (9)

Here the plus and minus superscripts indicate waves that
are positive-going and negative-going with respect to theand
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M̂ 5 M̂1M̂2 ? ? ? M̂N . Finally, the system matrix Â 5
F̂ 21

C M̂F̂S transforms the travelling wave field coefficients
from a point just inside the substrate to a point just inside
the cover.

However, before leaving this section we wish to reinforce
the fact that all matrix transformations discussed in this
section satisfy Maxwell’s equations and electromagnetic
field boundary conditions. The matrix transformations be-
tween the interfaces of a single layer, for example, give
the same result that could be obtained by superposing an
infinite set of multiply reflected beams.

FIG. 3. Labelling scheme used for the amplitudes of the four basis

5. REFLECTANCE AND TRANSMITTANCEvectors that propagate in the cover and the amplitudes of the four basis
vectors in the substrate.

Methods for computing the reflectance and transmit-
tance coefficients are developed in this section. MATLAB
code for implementing the procedures is listed in Appen-x-axis. The exact meaning of these terms and the pairing
dix A.implied by the subscripts 1 and 2 is discussed in Section 6.

4.3. Field Transfer Matrices
5.1. General Case

The y and z components of the total anharmonic field
The boundary conditions at the interfaces of a stack ofmR 5 hEy Hz Ez Hyj at a point in a layered medium can be

anisotropic films sandwiched between an anisotropic coverexpressed as a linear sum of the four harmonic travelling
and an anisotropic substrate are satisfied, provided thewave basis fields, mR 5 F̂aR. We shall refer to the column
total field F̂CaRC at the cover is equal to the result of trans-vector aR 5 ha1

1 a2
1 a1

2 a2
2j that provides the complex coeffi-

ferring the total field F̂SaRS in the substrate to the cover, i.e.,cients for the linear sum as the travelling wave field coeffi-
F̂CaRC 5 M̂F̂SaRS . Rearranging and using Â 5 F̂21

C M̂F̂S yieldscients (see Fig. 3) and to mR as the total field. Thus, the
the condition aRC 5 ÂaRS , i.e.,matrix F̂ has the property of transforming the travelling

wave field coefficients to the total field at the same point
in a layered biaxial medium and, similarly, F̂ 21 transforms
the total field to the travelling wave field coefficients at
the same point. 3

a1
1

a2
1

a1
2

a2
2

45 3
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

4 3
a1

3

a2
3

a1
4

a2
4

4 . (17)The other 4 3 4 matrices, M̂ and Â, provide useful
transformations. The phase matrix,

Note the use of subscripts 1, 2 in the cover and 3, 4 in theÂd 5 3
exp[2if1

1 ] 0 0 0

0 exp[2if2
1 ] 0 0

0 0 exp[2if1
2 ] 0

0 0 0 exp[2if2
2 ]
4 ,

substrate, as illustrated in Fig. 3.
Next we rearrange this equation so that it has the form

output waves 5 matrix x input waves,

(16)

where f6
1,2 5 ka6

1,2d, is a special case of Â and transforms
the travelling wave field coefficients from one point (at 3

a2
1

a2
2

a1
3

a1
4

4; r̂ 3
a1

1

a1
2

a2
3

a2
4

4 , (18)x 5 x0 , say) to the travelling wave field coefficients at
another point (at x 5 x0 2 d). The field transfer matrix
M̂ 5 F̂ÂdF̂ 21 transforms the total field from one point to
the total field at another point, such as across the interfaces
of a single layer. For N layers stacked between the cover
and the substrate the field transfer matrix is the product with the result
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r̂ ;3
r11 r12 t13 t14

r21 r22 t23 t24

t31 t32 r33 r34

t41 t42 r43 r44

4 3
E1

y1 E2
y1 E1

y2 E2
y2

H1
z1 H2

z1 H1
z2 H2

z2

E1
z1 E2

z1 E1
z2 E2

z2

H1
y1 H2

y1 H1
y2 H2

y2

4 3
a1

1

a2
1

a1
2

a2
2

4
(23)

5 3
E1

y3 E2
y3 E1

y4 E2
y4

H1
z3 H2

z3 H1
z4 H2

z4

E1
z3 E2

z3 E1
z4 E2

z4

H1
y3 H2

y3 H1
y4 H2

y4

4 3
a1

3

a2
3

a1
4

a2
4

4 ,5 3
0 0 2A11 2A13

1 0 2A21 2A23

0 0 2A31 2A33

0 1 2A41 2A43

4
21

3
21 0 A12 A14

0 0 A22 A24

0 21 A32 A34

0 0 A42 A44

4 .

(19)

and then a procedure similar to that used above leads toHere r̂ is to be regarded as an intermediary matrix, because
its elements are ratios of the a’s, rather than ratios of
actual field coefficients. The (irradiance) reflectance and
transmittance coefficients,

r̂ 5 3
E2

y1 E2
y2 2E1

y3 2E1
y4

H2
z1 H2

z2 2H1
z3 2H1

z4

E2
z1 E2

z2 2E1
z3 2E1

z4

H2
y1 H2

y2 2H1
y3 2H1

y4

4
21

(24)R̂ 5 3
R11 R12 T13 T14

R21 R22 T23 T24

T31 T32 R33 R34

T41 T42 R43 R44

4 , (20)

3
2E1

y1 2E1
y2 E2

y3 E2
y4

2H1
z1 2H1

z2 H2
z3 H2

z4

2E1
z1 2E1

z2 E2
z3 E2

z4

2H1
y1 2H1

y2 H2
y3 H2

y4

4 .

are defined in terms of ratios of power flow in the
x-direction. Thus R12 5 P2

1 /P1
2 5 ua2

1 u2up2
1 u/ua1

2 u2p1
2 u 5

ur12u2up2
1 /p1

2 u etc., where the p’s are the Poynting power
Thus in the direct method r̂ is defined in terms of thefluxes carried by the basis vectors along the x-axis and p
columns of F̂ rather than the columns of Â.may be found from

6. SORTING COLUMNS OF F̂
p 5 AsR(EyH*z 2 EzH*y ). (21)

In general it is not necessary to sort the basis vectors
associated with anisotropic layers, because M̂ for a filmFinally, the reflectance and transmittance coefficients are
does not depend on the order of the columns of F̂. How-given by
ever, a minimum sort of the cover and substrate basis
vectors is necessary because the equations leading to the
reflectance and transmittance coefficients require identifi-
cation of the positive-going (1) and negative-going (2)
basis waves. In the remaining part of this section we explainR̂ 53

ur11u2up2
1 /p1

1 u ur12u2up2
1 /p1

2 u ut13u2up2
1 /p2

3 u ut14u2up2
1 /p2

4 u

ur21u2up2
2 /p1

1 u ur22u2up2
2 /p1

2 u ut23u2up2
2 /p2

3 u ut24u2up2
2 /p2

4 u

ut31u2up1
3 /p1

1 u ut32u2up1
3 /p1

2 u ur33u2up1
3 /p2

3 u ur34u2up1
3 /p2

4 u

ut41u2up1
4 /p1

1 u ut42u2up1
4 /p1

2 u ur43u2up1
4 /p2

3 u ur44u2up1
4 /p2

4 u
4.

the various situations that arise and need to be addressed
by considering the most complicated numerical example.

Consider first the plot of a versus b shown in the left-
hand part of Fig. 4 for an anisotropic substrate specified(22)
by n1 5 2.4, n2 5 1.55, n3 5 2.0, c 5 2458, j 5 08. In this
case the eigenvectors are decoupled and propagate with p

5.2. Crystal–Crystal Interface
(transverse magnetic, TM) and s (transverse electric, TE)
polarizations. Thus, in this special situation (j 5 08) itIn the absence of films M̂ 5 Î and, hence, Â 5 F̂ 21

C F̂S .
Thus the general equations developed above are applicable would be natural to sort the a’s according to polarization.

However, for refractive index sections in which j is notto the crystal–crystal interface. Alternatively, the bound-
ary conditions for the crystal–crystal interface can be ex- exactly zero the inner and outer sheets of the refractive

index surface do not touch, and sorts based on polarizationpressed by the equation F̂CaRC 5 F̂SaRS , i.e.,
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ciation with the refractive index outer sheet (label 1 for
an anisotropic cover and label 3 for the substrate) or the
inner sheet (label 2 for an anisotropic cover and label 4
for the substrate).

In this particular example the cover is isotropic and
normal practice dictates that the basis vectors should repre-
sent p and s polarizations. For such cases we use

F̂ 5 3
1 1 0 0

cp 2cp 0 0

0 0 1 1

0 0 cs 2cs

4 (25)

with cp 5 H1
z /E1

y 5 2H2
z /E2

y 5 n/z0 cos u and cs 5
H1

y /E1
z 5 2H2

y /E2
z 5 2n cos u/z0 . The subscripts 1 and 2

in previous equations translate to p and s in the cover, and
3 and 4 would translate to p and s in an isotropic substrate.FIG. 4. Plots of a 5 n cos u versus b 5 n sin u for a biaxial medium

with n1 5 2.4, n2 5 1.55, n3 5 2.0, c 5 2458, and j 5 08 (left), j 5 28 The first column of the matrix R̂ is plotted in Fig. 5 as
(right). The cusp in the outer sheet of the refractive index surface provides a function of b, for the range 0 # b # 1 corresponding to
the most complicated example for sorting and matching a’s determined 0 # uC # 908. For each of these curves the incident light
as eigenvalues with optical features.

is the 11 (p) wave in the cover. The upper part of the
figure shows a Brewster angle reflection for R11 ; Rpp .
For small values of b the incident light excites p-like (41)

lead to discontinuities in plotted curves of reflectance and
transmittance as functions of angle of incidence or b.

Figure 4 (right) shows the outer sheet (solid line) and
inner sheet (broken line) for the anisotropic substrate with
j 5 28. For a given b the four associated values of a can
be determined by drawing a vertical line in the figure, and
the directions of the component of the Poynting vector in
the x–y plane obtained by drawing normals to the curves.
The positive a direction in Fig. 4 corresponds to the x-axis
shown normal to the substrate in Fig. 2. It is clear that the
sign of a (and, hence, the sign of the x-component of the
wavevector) is not a reliable indicator of the sense of power
flow along the x-axis. For this reason we take the terms
positive-going (1) and negative-going (2) to refer to posi-
tive and negative senses of power flow along the x-axis for
nonevanescent waves. In the case of evanescent waves,
which carry no average power along x, the terms positive-
going and negative-going are conveniently associated with
the sign of the imaginary part of a, as this implies exponen-
tially decreasing field strengths for waves moving away
from the interface(s).

Apart from the necessary sort of cover and substrate
basis vectors considered above, matching of the subscript
pairs 1, 2 and 3, 4 with optical characteristics of the cover
and substrate media is desirable to prevent fragmentation
in plotted curves such as R11 versus u. To illustrate suitable
procedures we consider the above substrate (with j 5 28), FIG. 5. Four of the 16 R–T coefficients plotted as functions of b 5
together with an air (n1 5 n2 5 n3 5 1) cover. For small n sin u for an air cover medium and the biaxial substrate specified by

n1 5 2.4, n2 5 1.55, n3 5 2.0, c 5 2458, and j 5 28.values of b the ‘‘optical characteristic’’ used is simply asso-
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sheet (two real), inner sheet (two real); (ii) outer sheet
(two real), inner sheet (pair of compex conjugates); (iii)
outer sheet (four real); (iv) outer sheet (two pairs of com-
plex conjugates). In each case the four positions on the
refractive index surface can be identified by considering
the numerical order of the real parts of a, together with
the sign of the x-component of the Poynting vector or the
sign of the imaginary part of a. The labels in Fig. 6, which
result from such a sorting procedure, ensure both identifi-
cation and continuity of reflectance and transmittance
curves for this complicated example. In specific (and more
usual) cases in which a cusp is not present in the outer
sheet, sorting is correspondingly simpler.

7. CONCLUSIONS

The eigenequation approach yields a simple method for
calculating the optical properties of anisotropic media.
When the substrate and the cover are both isotropic, the
adoption of presorted basis field matrices means that no
further sorting of eigenfunctions is necessary for calcula-
tions of reflectance and transmittance.

Identification of the four eigenvectors propagating in an
anisotropic cover or substrate is necessary for reflectanceFIG. 6. Real and imaginary parts of a near the cusp described in Fig.
and transmittance calculations and can be achieved for the4. The labelling scheme both satisfies the minimum sorting requirement

and prevents fragmentation in plotted reflectance and transmittance simple case of real alpha’s by association with the outer
curves. and inner sheets of the refractive index surface. In the

most complicated case, which includes a cusp in the outer
refractive index sheet, the alpha’s are sorted by real parts,waves in the substrate, and hence T41 is large. The sudden

fall in T41 and the corresponding rapid rise in T31 is caused together with the sign of the normal component of the
Poynting vector or the imaginary part of the complex con-by the switches in polarization character from p-like to s-

like and s-like to p-like shown by the labels on Fig. 4(right). jugate pair.
The main advantage of the method is economy of com-Unfortunately, pairs of a’s cannot always be identified

with the outer and inner sheets of the refractive index puter code, compared to traditional methods in which a
quartic for a is solved and the fields are obtained by back-surface, and our example has been chosen to illustrate this

point. Suppose that a line of constant b is moved from the substitution. When the method is used with a numerical
computation software package, such as MATLAB, only aleft-hand side to the right-hand side of Fig. 6, in which

both real and imaginary parts of a are plotted as functions few lines of code are required for the determination of the
reflectance and transmittance coefficients.of b. The intersections made can be classed as (i) outer

APPENDIX A: MATLAB CODE

% The eigenvector method has the advantage of yielding compact MATLAB code for comput-
% ing the coefficients of reflectance and transmittance from stratified birefringent me-
% dia. To begin the dielectric tensor e is determined for the propagation x, y, z
% frame using Eqs. (2–6). Then the 4x4 matrix F and the alpha’s associated with each
% medium are found from Eq.(14),

[F,Alpha]=eig([

-b*exy/exx (1-b*b/exx)*z0 -b*exz/exx 0

(eyy-exy^2/exx)/z0 -b*exy/exx (eyz-exy*exz/exx)/z0 0

0 0 0 -z0

(-eyz+exy*exz/exx)/z0 b*exz/exx (b^2+exz^2/exx-ezz)/exx/z0]-Z0);
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alpha=[Alpha(1,1) Alpha(2,2) Alpha(3,3) ... alpha(4,4)];

% The powers pc and ps of the four cover basis waves and the four substrate basis
% waves are determined using Eq.(21),

p=real([F(1,:).*conj(F(2,:))-F(3,:) ... *conj(F(4,:))])/2;

% Fc and Fs require sorting by columns into + - + - pairs. Calculation of the system
% matrix A is straightforward (Sect. 4.3) and the intermediary matrix r is computed
% using Eq.(19),

r=inv([I(:,2) I(:,4) -A(:,1) -A(:,3)])* ... [-I(:,1) -I(:,3) A(:,2) A(:,4)];

% If there are no layers then for the crystal–crystal interface it is simpler to use
% Eq.(24),

r=inv([Fc(:,2)Fc(:,4) -Fs(:,1) -Fs(:,3)])* ... [-Fc(:,1) -Fc(:,3) Fs(:,2) Fs(:,4)];

% Finally the matrix R holding the eight reflectances and eight transmittances is de-
% termined from Eq. (22),

R=abs([pc(2) pc(4) ps(1) ps(3)]’* ... [1/pc(1) 1/pc(3) 1/ps(2) 1/ps(4)])...
*abs(r).^2;
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